Решение онлайн уравнений, неравенств и их систем, интегралов, производных, логарифмов, упрощение выражений. Исследование функции онлайн

   Сервис на данной странице позволяет решить математику онлайн, выполнить:
  • онлайн решение задач;
  • решение уравнений онлайн;
  • решение неравенств онлайн;
  • решение интегралов онлайн;
  • решение логарифмов онлайн;
  • решение пределов онлайн;
  • нахождение производных онлайн;
  • исследование функции онлайн;
  • и много-много чего еще...

Краткий список обозначений и операторов WolframAlpha
для решения задач онлайн

+
сложение
-
вычитание
*
умножение
/
деление
^
возведение в степень
solve
решение уравнений, неравенств,
систем уравнений и неравенств
expand
раскрытие скобок
factor
разложение на множители
sumвычисление суммы членов последовательности
derivativeдифференцирование (производная)
integrateинтеграл
limпредел
infбесконечность
plotпостроить график функции
log (a, b)логарифм по основанию a числа b
sin, cos, tg, ctgсинус, косинус, тангенс, котангенс
sqrtкорень квадратный
piчисло "пи" (3,1415926535...)
eчисло "е" (2,718281...)
iМнимая единица i
minimize,
maximize

Нахождение экстремумов функции (минимумов и максимумов)

Примеры решения задач онлайн с помощью WolframAlpha

1. Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических уравнений.
Пример 1. Чтобы решить уравнение x2 + 3x - 4 = 0, нужно ввести solve x^2+3x-4=0
Пример 2. Чтобы решить уравнение log32x = 2, нужно ввести solve log(3, 2x)=2
Пример 3. Чтобы решить уравнение 25x-1 = 0.2, нужно ввести solve 25^(x-1)=0.2
Пример 4. Чтобы решить уравнение sin x = 0.5, нужно ввести solve sin(x)=0.5

2. Решение систем уравнений.
Пример. Чтобы решить систему уравнений

          x + y = 5,
          x - y = 1,

нужно ввести solve x+y=5 && x-y=1
Знаки && в данном случае обозначает логическое "И".

3. Решение рациональных неравенств любой степени.
Пример. Чтобы решить неравенство x2 + 3x - 4 < 0, нужно ввести solve x^2+3x-4<0

4. Решение систем рациональных неравенств.
Пример. Чтобы решить систему неравенств

          x2 + 3x - 4 < 0,
          2x2 - x + 8 > 0,

нужно ввести solve x^2+3x-4<0 && 2х^2 - x + 8 > 0
Знаки && в данном случае обозначает логическое "И".

5. Раскрытие скобок + приведение подобных в выражении.
Пример. Чтобы раскрыть скобки в выражении (c+d)2(a-c) и привести подобные, нужно
ввести expand (c+d)^2*(a-c).

6. Разложение выражения на множители.
Пример. Чтобы разложить на множители выражение  x2 + 3x - 4, нужно ввести factor x^2 + 3x - 4.

7. Вычисление суммы n первых членов последовательности (в том числе арифметической и геометрической прогрессий).
Пример. Чтобы вычислить сумму 20 первых членов последовательности, заданной формулой an = n3+n, нужно ввести sum n^3+n, n=1..20
Если нужно вычислить сумму первых 10 членов арифметической прогрессии, у которой первый член a1 = 3, разность d = 5, то можно, как вариант, ввести a1=3, d=5, sum a1 + d(n-1), n=1..10
Если нужно вычислить сумму первых 7 членов геометрической прогрессии, у которой первый член b1 = 3, разность q = 5, то можно, как вариант, ввести b1=3, q=5, sum b1*q^(n-1), n=1..7

8. Нахождение производной.
Пример. Чтобы найти производную функции f(x) =x2 + 3x - 4, нужно ввести derivative x^2 + 3x - 4

9. Нахождение неопределенного интеграла.
Пример. Чтобы найти первообразную функции f(x) =x2 + 3x - 4, нужно ввести integrate x^2 + 3x - 4

10. Вычисление определенного интеграла.
Пример. Чтобы вычислить интеграл функции f(x) =x2 + 3x - 4 на отрезке [5, 7],
нужно ввести 
integrate x^2 + 3x - 4, x=5..7

11. Вычисление пределов.
Пример. Чтобы убедиться, что

 Первый замечательный предел

введите lim (x -> 0) (sin x)/x и посмотрите ответ. Если нужно вычислить какой-то предел при x, стремящемся к бесконечности, следует вводить x -> inf.

12. Исследование функции и построение графика.
Пример. Чтобы исследовать функцию x3 - 3x2 и построить ее график, просто введите x^3-3x^2. Вы получите корни (точки пересечения с осью ОХ), производную, график, неопределенный интеграл, экстремумы.

13. Нахождение наибольшего и наименьшего значений функции на отрезке.
Пример. Чтобы найти минимальное значение функции x3 - 3x2 на отрезке [0.5, 2],
нужно ввести minimize (x^3-x^2), {x, 0.5, 2}
Чтобы найти максимальное значение функции x3 - 3x2 на отрезке [0.5, 2],
нужно ввести maximize (x^3-x^2), {x, 0.5, 2}